
Symbolic Regression of Conditional Target
Expressions

Michael F. Korns

Freeman Investment Management, 1 Plum Hollow, Henderson, Nevada 89052 USA
mkorns@korns.com.

Summary. This chapter examines techniques for improving symbolic regression
systems in cases where the target expression contains conditionals. In three previous
papers we experimented with combining high performance techniques from the liter-
ature to produce a large scale, industrial strength, symbolic regression-classification
system. Performance metrics across multiple problems show deterioration in accu-
racy for problems where the target expression contains conditionals. The techniques
described herein are shown to improve accuracy on such conditional problems. Nine
base test cases, from the literature, are used to test the improvement in accuracy.
A previously published regression system combining standard genetic programming
with abstract expression grammars, particle swarm optimization, differential evo-
lution, context aware crossover and age-layered populations is tested on the nine
base test cases. The regression system is enhanced with these additional techniques:
pessimal vertical slicing, splicing of uncorrelated champions via abstract conditional
expressions, and abstract mutation and crossover. The enhanced symbolic regres-
sion system is applied to the nine base test cases and an improvement in accuracy
is observed.

Key words: Abstract Expression Grammars, Differential Evolution, Genetic
Programming, Particle Swarm, Symbolic Regression.



2 Michael F. Korns

1 Introduction

This chapter examines techniques for improving symbolic regression systems
in cases where the target expression contains conditionals. In three previ-
ous papers (Korns, 2006), (Korns, 2007), and (Korns, 2008), our pursuit of
industrial scale performance with large-scale, symbolic regression problems,
required us to reexamine many commonly held beliefs and, of necessity, to bor-
row a number of techniques from disparate schools of genetic programming
and ”recombine” them in ways not normally seen in the published literature.
The evolutionary techniques, as of the three previous papers, vetted for effi-
cacy in symbolic regression are as follows:

• Standard tree-based genetic programming
• Vertical slicing and out-of-sample scoring during training
• Grammar template genetic programming
• Abstract expression grammars utilizing swarm intelligence
• Context aware cross over
• Age-layered populations
• Random noise terms for learning asymmetric noise
• Bagging

While the above techniques, described in detail in (Korns 2008), produce
a symbolic regression system of breadth and strength, performance metrics
across multiple problems show deterioration in accuracy for problems where
the target expression contains conditionals. Using the nine base test cases
from (Korns, 2007) as a training set, to test for improvements in accuracy,
we enhanced our symbolic regression system with these additional techniques
which we will show improve accuracy:

• Pessimal vertical slicing
• Splicing
• Abstract mutation and crossover

For purposes of comparison, all results in this paper were achieved on
two workstation computers, specifically an Intel Core 2 Duo Processor T7200
(2.00GHz/667MHz/4MB) and a Dual-Core AMD Opteron Processor 8214
(2.21GHz), running our Analytic Information Server software generating Lisp
agents that compile to use the on-board Intel registers and on-chip vector
processing capabilities so as to maximize execution speed, whose details can
be found at www.korns.com/Document Lisp Language Guide.html. Further-
more, our Analytic Information Server is in the founding process of becoming
an open source software project.



Symbolic Regression of Conditional Target Expressions 3

1.1 Testing Regimen

Our testing regimen uses only statistical best practices out-of-sample testing
techniques. We test each of the nine test cases on matrices of 10000 rows
by 5 columns with no noise, and on matrices of 10000 rows by 20 columns
with 40% noise, before drawing any performance conclusions. Taking all these
combinations together, this creates a total of 18 separate test cases. For each
test a training matrix is filled with random numbers between -50 and +50.
The target expression for the test case is applied to the training matrix to
compute the dependent variable and the required noise is added. The symbolic
regression system is trained on the training matrix to produce the regression
champion. Following training, a testing matrix is filled with random numbers
between -50 and +50. The target expression for the test case is applied to
the testing matrix to compute the dependent variable and the required noise
is added. The regression champion is evaluated on the testing matrix for all
scoring (i.e. out of sample testing).

1.2 Fitness Measure

Standard regression techniques often utilize least squares error (LSE) as a
fitness measure. In our case we normalize by dividing LSE by the standard
deviation of ”Y” (dependent variable). This normalization allows us to mean-
ingfully compare the normalized least squared error (NLSE) between different
problems.

Of special interest is combining fitness functions to support both symbolic
regression and classification of common stocks into long and short candidates.
Specifically we would like to measure how successful we are at predicting the
future top 10% best performers (long candidates) and the future 10% worst
performers (short candidates)1.

Briefly, let the dependent variable, Y, be the future profits of a set of se-
curities, and the variable, EY, be the estimates of Y. If we were prescient,
we could automatically select the best future performers actualBestLongs,
ABL, and worst future performers actualBestShorts, ABS, by sorting on Y
and selecting an equally weighted set of the top and bottom 10%. Since we
are not prescient, we can only select the best future estimated performers
estimatedBestLongs, EBL, and estimated worst future performers estimat-
edBestShorts, EBS, by sorting on EY and selecting an equally weighted set
of the top and bottom 10%. If we let the function avgy represent the average
y over the specified set of fitness cases, then clearly the following will always
be the case.

• -1 <= ((avgy(EBL)-avgy(EBS))/(avgy(ABL)-avgy(ABS))) <= 1

1 The concept of long short tail classification is described in detail in (Korns, 2007).



4 Michael F. Korns

We can construct a fitness measure known as tail classification error, TCE,
such that

• TCE = ((1-((avgy(EBL)-avgy(EBS))/(avgy(ABL)-avgy(ABS))))/2)

and therefore

• 0 <= TCE <= 1

A situation where TCE < 0.50 indicates we are making money specu-
lating on our short and long candidates. Obviously 0 is a perfect score (we
might as well have been prescient) and 1 is a perfectly imperfect score (other
traders should do the opposite of what we do). Clearly, considering our fi-
nancial motivation, we are interested in achieving superior regression fitness
measures; but, we are also interested in superior classification. In fact, even
if the regression fitness (NLSE) is poor but the classification (TCE) is good,
we can still have an advantage, in the financial markets, with our symbolic
regression-classification tool.

Since both the TCE and NLSE fitness measures are normalized, we can
make standard interpretations of results across a wide range of experiments.
In the case of NLSE, any score of 0.30 or less is very good (meaning the
average least squared error is less than 0.30 of the standard deviation of Y),
while a score of less than 0.50 is okay, NLSE scores greater than 0.50 indicate
increasingly poor regression results. Our system automatically averages the
estimates of the ten top champions (bagging) whenever the training NLSE of
the top champion is greater than 0.50. Finally, a TCE score of less than 0.20
is excellent. A TCE score of less than 0.30 is good; while, a TCE of 0.30 or
greater is poor.

2 Previous Results on Nine Base Problems

The previously published results (Korns 2008) of training on the nine base
training models on 10,000 rows and five columns with no random noise and
only 20 generations allowed, are shown below 2.

In general, training time is very reasonable given the difficulty of some of
the problems and the limited number of training generations allowed. Average
percent error performance varies from excellent to poor with the linear and
cubic problems showing the best performance. Extreme differences between
training error and testing error in the mixed and ratio problems suggest over-
fitting.

Surprisingly, long and short classification is fairly robust in most cases
with the exception of the ratio, and mixed test cases. The salient observation
is the relative ease of classification compared to regression even in problems
with this much noise. In some of the test cases, testing NLSE is either close
2 The nine base test cases are described in detail in (Korns, 2007).



Symbolic Regression of Conditional Target Expressions 5

to or exceeds the standard deviation of Y (not very good); however, in many
of the test cases classification is below 0.20. (very good).

Table 1. Result For 10K rows by 5 columns no Random Noise

Test Minutes Train-NLSE Test-NLSE Test-TCE
linear 0 0.01 0.01 0.00
cubic 0 0.00 0.00 0.00
cross 107 0.37 0.39 0.02
elipse 0 0.00 0.00 0.00
hidden 3 0.00 0.05 0.00
cyclic 4 0.04 0.14 0.06
hyper 369 0.00 0.00 0.00
mixed 123 0.24 1.65 0.13
ratio 6 0.03 1.05 0.50

The previously published results (Korns 2008) of training on the nine base
training models on 10,000 rows and twenty columns with 40% random noise
and only 20 generations allowed, are shown below.

Table 2. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Test-NLSE Test-TCE
linear 10 0.11 0.11 0.00
cubic 10 0.11 0.11 0.00
cross 9 0.80 0.80 0.19
elipse 12 0.45 0.46 0.05
hidden 10 0.99 0.99 0.45
cyclic 8 0.39 0.91 0.18
hyper 9 0.96 0.96 0.36
mixed 12 0.69 1.85 0.07
ratio 26 0.95 1.18 0.46

Clearly the symbolic regression system performs most poorly on the test
cases hidden, mixed and ratio with conditional target expressions. There is
evidence of over-fitting shown by the extreme differences between training
error and testing error. Plus, the testing TCE is very poor in both ratio test
cases. Taken together, these scores portray a symbolic regression system which
is not ready to handle industrial strength problems containing conditional
target expressions.

Enhancements which will improve our regression scores on the two con-
ditional base test cases, without also greatly reducing the efficiency of the



6 Michael F. Korns

symbolic regression system on the other test cases, is the subject of the re-
mainder of this chapter.

3 Pessimal Vertical Slicing

In (Korns 2006) we describe an out-of-sample testing procedure we call vertical
slicing, wherein the rows in the training matrix X are sorted in ascending order
by the dependent values, Y. Then the sorted rows in X are subdivided into
S vertical slices by selecting every S-th row to be in each vertical slice. Thus
the first vertical slice is the set of training rows as follows X[0], X[S], X[2*S],
... .

Since Y represents the behavior of the system to be learned, sorting X by Y
insures that each vertical slice contains training examples equally distributed
across the range of behaviors of the system. We train on a single vertical slice,
but score across every fitness example in X.

Vertical slicing reduces training time (which in multiple regression and
swarm grammars can be time consuming); while simultaneously reducing over
fitting by scoring fitness over all slices (out-of-sample testing) 3.

Our normal vertical slicing sampling size is one out of every hundred train-
ing cases. Of course with difficult conditional target expressions, while this
sampling size reduces training time, it also reduces accuracy. So we face a
conundrum. Increasing the sampling rate increases accuracy; but, also greatly
increases the time to manage easier test cases.

One solution is to leave our normal sampling size as it is (one out of every
hundred training cases) until an emergency is declared. If we get to the end of
the first training epoch (currently sent to ten generations) and the champion
NLSE is .50 or higher, then we declare an emergency. The emergency sampling
rate is one out of every four training cases. Increasing the emergency sampling
rate increases accuracy for the difficult problems; and, has no impact on the
easier test cases.

For complete training coverage, we intersperse randomly selected vertical
training slices with pessimally selected vertical training slices with respect to
the current best-of-breed champion. The pessimal verstical slice, with respect
to the current best-of-breed champion, is the verticle slice on which the current
champion has the worst fitness scores. Regardless of which vertical slice is
selected, as the training subset, we still score across every fitness example
in X. Choosing randomly selected training subsets forces complete training
coverage while still maintaining the out-of-sample scoring so important for
avoiding overfitting. Choosing the pessimal training subset forces the system
to learning those test cases which have been difficult for the current champion
while still maintaining the out-of-sample scoring.
3 The implementation of Vertical Slicing is described in detail in (Korns, 2006).



Symbolic Regression of Conditional Target Expressions 7

4 Splicing Background

Our system uses a technique known as aged-layered population structure
(ALPS), devised to minimize premature population convergence 4. During
the course of an ALPS training run we keep track of an elitist pool of all-time
champions. As an enhancement, to support splicing, we simultaneously keep
track of a second elitist pool of all-time champions which are uncorrelated to
the champions in the elitist pool. Unfortunately managing the uncorrelated
champion pool requires that we perform a standard statistical correlation test
for every new champion above a certain NLSE. This process is not free, and
therefore it will degrade the performance on the easier test cases to some ex-
tent. Nevertheless maintaining an uncorrelated champion pool will allow us to
splice uncorrelated champions together using conditional abstract expressions.

Before we can reasonably describe the splicing process in detail, we must
provide a brief background on abstract expression grammars as they are used
in this symbolic regression system.

In the literature, informal and formal grammars have been used in genetic
programming to enhance the representation and the efficiency of a number of
applications including symbolic regression - see overviews in (O’Neill, 2003)
and (Poli, 2008). Using a hybrid combination of tree-based GP and formal
grammars, where the head of each s-expression is a grammar rule, the standard
genetic programming population operators of mutation and crossover can be
used without alteration. We use standard mutation and crossover operations
(Koza, 1992) and support both simple regression and multiple regression.

4.1 A Concrete Expression Grammar

A simple concrete expression grammar suitable for use in most symbolic re-
gression systems would be a C-like grammar with the following basic elements.

• Real Numbers: 3.45, -.0982, and 100.389
• Row Features: x1, x2, and x5.
• Operators: +, *, /, %, <, <=, ==, ! =, >=, >
• Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc.
• Conditional: (expr1 < expr2) ? expr3 : expr4

Our numeric expressions are JavaScript-like containing the variables x0
through xm (where m is the number of columns in the regression problem),
real constants such as 2.45 or -34.687, with the following operators +, -, /,
%, *, <, <=, ==, ! =, >=, >, and binary functions expt, max, min, and
unary operators abs, cos, cosh, cube, exp, log, sin, sinh, sqrt, square,
tan, tanh, and the ternary conditional expression operator (...) ? (...) : (...);

4 The implementation of age-layered population structure is described in detail in
(Hornby, 2006).



8 Michael F. Korns

Our symbolic regression system creates its regression champion using mu-
tation, and cross over; but, the final regression champion will be a compilation
of a basic concrete expression such as:

• (E1): f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

Computing an NLSE score for f requires only a single pass over every
row of X and results in an attribute being added to f by executing the score
method compiled into f as follows.

• f.NLSE = f.score(X,Y).

4.2 Abstract Constants

Suppose that we are satisfied with the form of the expression in (E1); but,
we are not sure that the real constant 45.3 is optimal. The standard genetic
programming algorithm does not provide a mechanism for optimizing the real
constant, 45.3, other than running the symbolic regression system for more
iterations; and, then we are not guaranteed of receiving an improved answer in
the same form as in (E1). We can enhance our symbolic regression system with
the ability to optimize individual real constants by adding abstract constant
rules to our built-in algebraic expression grammar.

• Abstract Constants: c1, c2, and c10

Abstract constants represent placeholders for real numbers which are to be
optimized by the symbolic regression system. To further optimize f we would
alter the expression in (E1) as follows.

• (E2): f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

The compiler adds a new real number vector, C, attribute to f such that f.C
has as many elements as there are abstract constants in (E2). Optimizing this
version of f requires that the built-in score method compiled into f be changed
from a single pass to a multiple pass algorithm in which the real number val-
ues in the abstract constant vector, f.C, are iterated until the expression in
(E2) produces an optimized NLSE. This new score method has the side ef-
fect that executing f.score(X,Y) also alters the abstract constant vector, f.C,
to optimal real number choices. Clearly the particle swarm (Eberhardt 2001)
and differential evolution algorithms provide excellent candidate algorithms
for optimizing f.C and they can easily be compiled into f.score by common
compilation techniques currently in the main stream. Summarizing, we have
a new grammar term, c1, which is a reference to the 1st element of the real



Symbolic Regression of Conditional Target Expressions 9

number vector, f.C (in C language syntax c1 == f.C[1]). The f.C vector is
optimized by scoring f, then altering the values in f.C, then repeating the pro-
cess iteratively until an optimum NLSE is achieved. Two important features
of abstract expression grammars are worth mention here. The overall genetic
programming algorithms within the nonlinear regression system do not have
to be altered because the swarm and differential learning enhancements are
hidden inside the score method by the abstract expression compiler when ap-
propriate. Furthermore, as Riccardo Poli (Poli 2008) has pointed out, a new
population operator can be defined which converts abstract expressions into
their concrete counterparts. For instance, if the regression champion agent in
(E2) is optimized with:

• f.C == < 45.396 >

Then the optimized regression champion agent in (E2) has a concrete
conversion counterpart as follows:

• f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3)

Since abstract expressions are not grammatically excessively different than
concrete expressions, the genetic programming logic in the symbolic regression
system will be able to apply the same type of operations (crossover, muta-
tion, etc.) on either type of expression. At different stages in the evolutionary
process population operators can be introduced which convert abstract ex-
pressions into their optimized concrete counterparts, or even new mutation
operators which convert concrete expressions into abstract expressions.

4.3 Abstract Features

Suppose that we are satisfied with the form of the expression in (E1); but,
we are not sure that the features, x2, x3, and x6, are optimal choices. The
standard genetic programming algorithm does not provide a mechanism for
optimizing these features other than running the symbolic regression system
for more iterations; and, then we are not guaranteed of receiving an improved
answer in the same form as in (E1). We can enhance our symbolic regression
system with the ability to optimize individual features by adding abstract
feature rules to our built-in algebraic expression grammar.

• Abstract Features: v1, v2, and v10

Abstract features represent placeholders for features which are to be op-
timized by the nonlinear regression system. To further optimize f we would
alter the expression in (E1) as follows.



10 Michael F. Korns

• (E3): f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1)

The compiler adds a new integer vector, V, attribute to f such that f.V
has as many elements as there are abstract features in (E3). Each integer
element in the f.V vector is constrained between 1 and M, and represents a
choice of feature (in x). Optimizing this version of f requires that the built-in
score method compiled into f be changed from a single pass to a multiple
pass algorithm in which the integer values in the abstract feature vector, f.V,
are iterated until the expression in (E3) produces an optimized NLSE. This
new score method has the side effect that executing f.score(X,Y) also alters
the abstract feature vector, f.V, to integer choices selecting optimal features
(in x). Clearly the genetic algorithm (Man 1999), discrete particle swarm
(Eberhardt 2001), and discrete differential evolution (Price 2005) algorithms
provide excellent candidate algorithms for optimizing f.V and they can easily
be compiled into f.score by common compilation techniques currently in the
main stream. Summarizing, we have a new grammar term, v1, which is an
indirect feature reference thru to the 1st element of the integer vector, f.V (in
C language syntax v1 == x[f.V[1]]). The f.V vector is optimized by scoring
f, then altering the values in f.V, then repeating the process iteratively until
an optimum NLSE is achieved. For instance, the regression champion agent
in (E3) is optimized with:

• f.V == < 2, 4, 1, 6 >

Then the optimized regression champion agent in (E3) has a concrete
conversion counterpart as follows:

• f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2)

4.4 Abstract Functions

Similarly, we can enhance our nonlinear regression system with the ability to
optimize individual features by adding abstract functions rules to our built-in
algebraic expression grammar.

• Abstract Functions: f1, f2, and f10

Abstract functions represent placeholders for built-in functions which are
to be optimized by the nonlinear regression system. To further optimize f we
would alter the expression in (E2) as follows.

• (E4): f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3)



Symbolic Regression of Conditional Target Expressions 11

The compiler adds a new integer vector, F, attribute to f such that f.F
has as many elements as there are abstract features in (E4). Each integer
element in the f.F vector is constrained between 1 and (number of built-in
functions available in the expression grammar), and represents a choice of
built-in function. Optimizing this version of f requires that the built-in score
method compiled into f be changed from a single pass to a multiple pass
algorithm in which the integer values in the abstract function vector, f.F,
are iterated until the expression in (E4) produces an optimized NLSE. This
new score method has the side effect that executing f.score(X,Y) also alters
the abstract function vector, f.F, to integer choices selecting optimal built-in
functions. Clearly the genetic algorithm (Man 1999), discrete particle swarm
(Eberhardt 2001), and discrete differential evolution (Price 2005) algorithms
provide excellent candidate algorithms for optimizing f.F and they can easily
be compiled into f.score by common compilation techniques currently in the
main stream. Summarizing, we have a new grammar term, f1, which is an
indirect function reference thru to the 1st element of the integer vector, f.F (in
C language syntax f1 == funtionList[f.F[1]]). The f.F vector is optimized by
scoring f, then altering the values in f.F, then repeating the process iteratively
until an optimum NLSE is achieved. For instance, if the valid function list in
the expression grammar is

• f.functionList = < log, sin, cos, tan, max, min, avg, cube, sqrt >

And the regression champion agent in (E4) is optimized with:

• f.F = < 1, 8, 2, 4 >

Then the optimized regression champion agent in (E4) has a concrete
conversion counterpart as follows:

• f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The built-in function argument arity issue is easily resolved by having each
built-in function ignore any excess arguments and substitute defaults for any
missing arguments. Furthermore random noise functions, such as in (Schmidt
2007), can easily be added to the list of available built-in functions in the
expression grammar.

5 Splicing Details

Assume that we have reached the end of the first training epoch and the best
of breed NLSE is so high that we declare an emergency. What action do we
take to address this declared emergency?



12 Michael F. Korns

Our approach is to introduce an end-of-epoch splicing algorithm to fit
together uncorrelated champions using abstract conditional expressions. Se-
lecting the fittest champion, G, from the elitist all-time champion pool and
selecting the fittest champion, H, from the uncorrelated champion pool, we
create several new candidate champions by splicing together the well formed
formulas G.wff and H.wff via various predefined abstract conditional expres-
sions as follows.

• B1: y = (v1>c1) ? G.wff : H.wff
• B2: y = (c1>v1) ? G.wff : H.wff
• B3: y = (v1>v2) ? G.wff : H.wff
• B4: y = (f1(v1,v2)>c1) ? G.wff : H.wff
• B5: y = (f1(v1,v2)<c1) ? G.wff : H.wff
• B6: y = (f1(v1,v2)>v3) ? G.wff : H.wff
• B7: y = (f1(v1,v2)<v3) ? G.wff : H.wff
• B8: y = (f1(v1,v2)<f2(v3,v4)) ? G.wff : H.wff

Finally, at the end of each epoch, the splicing algorithm introduces each
of the above abstract expressions into the evolutionary pool trying to improve
the NLSE over that of the current best of breed champion. Each of the above
splicings is optimized and their optimized concrete conversions are stored
in the appropriate population.

For example, suppose our target expression is shown in (E5) below, our
best of breed champion is such that G.wff = tan(x6), and our best uncorrelated
champion is such that H.wff = cos(x3), then we have final training situation
as follows.

• (E5): f = (log(x3)>x4) ? tan(x6) : cos(x3)
• G.wff = tan(x6)
• H.wff = cos(x3)

Clearly, given the above situation, the splicing algorithm would attempt
to train the following several spliced abstract conditional champions.

• B1: y = (v1>c1) ? tan(x6) : cos(x3)
• B2: y = (c1>v1) ? tan(x6) : cos(x3)
• B3: y = (v1>v2) ? tan(x6) : cos(x3)
• B4: y = (f1(v1,v2)>c1) ? tan(x6) : cos(x3)
• B5: y = (f1(v1,v2)<c1) ? tan(x6) : cos(x3)
• B6: y = (f1(v1,v2)>v3) ? tan(x6) : cos(x3)
• B7: y = (f1(v1,v2)<v3) ? tan(x6) : cos(x3)
• B8: y = (f1(v1,v2)<f2(v3,v4)) ? tan(x6) : cos(x3)

If the splicing algorithm is behaving optimally, we would expect the final
concrete conversion of the fully trained (B6) to be as follows.



Symbolic Regression of Conditional Target Expressions 13

• B6 (concrete): y = (log(x3)>x4) ? tan(x6) : cos(x3)

This is of course the correct answer.

6 Abstract Mutation and Crossover

In standard mutation and crossover, random segments of program code are
selected for mutation and swapping. In abstract mutation and crossover, these
randomly selected segments are abstracted. In both abstract mutation and
abstract crossover, a set of simple rules define the process of abstracting an
expression segment, as follows:

• Real Numbers: 3.45, -.0982 are converted to c1, c1
• Row Features: x1, x4 are converted to v1, v2
• Operators: +, * are converted to f1(), f2()
• Functions: sqrt(), log() are converted to f1(), f1()

Using these simple rules, the abstract mutation population operator works
as in the following example:

• f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)
• The selected segment sin(x2*45.3) is abstracted into f1(f2(v1,c1))
• where f1 = sin, f2 = *, v1 = x2, and c1 = 45.3
• which is then inserted below
• f = (log(x3)/f1(f2(v1,c1)))>x4 ? tan(x6) : cos(x3)

Similarly, the abstract crossover population operator selects two random
segments from two expressions such as:

• dad = (log(x3)/sin(x2*45.3))
• mom = (tan(x3)/cube(x2*45.3))
• The selected segments are first swapped and then ”abstracted” as follows:
• dad = (x2*45.3)/sin(x2*45.3)) abstracted as = (f1(v1,c1))/sin(x2*45.3))
• mom = (tan(x3)/cube(log(x3))) abstracted as = (tan(x3)/cube(f1(v1)))

After abstract mutation or crossover, the new abstract expressions are
optimized by the regression system. Only their optimized concrete con-
versions are saved in the proper evolutionary populations. In the enhanced
system, 5% of all mutations are abstract mutations and 5% of all crossovers
are abstract crossovers.

From first principles, abstract mutation and crossover are compelling be-
cause it is less likely that 45.3 will be optimal in a new mutation or location;
and, more likely that c1 will find a local optimum in the new mutation or
location. Similar arguments are put forward for v1, and f1.



14 Michael F. Korns

7 Enhanced Results on Nine Base Problems

The enhanced results of training on the nine base training models on 10,000
rows and five columns with no random noise and only 20 generations allowed,
are shown below in order of difficulty.

Table 3. Result For 10K rows by 5 columns no Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 1 0.00 0.00 0.00 0.00
cubic 1 0.00 0.00 0.00 0.00
cross 145 0.00 0.00 0.00 0.00
elipse 1 0.00 0.00 0.00 0.00
hidden 3 0.00 0.00 0.00 0.00
cyclic 1 0.02 0.00 0.00 0.00
hyper 65 0.17 0.00 0.17 0.00
mixed 233 0.94 0.32 0.95 0.32
ratio 229 0.94 0.33 0.94 0.32

The enhanced results of training on the nine base training models on 10,000
rows and twenty columns with 40% random noise and only 20 generations
allowed, are shown below in order as shown above.

Table 4. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 82 0.11 0.00 0.11 0.00
cubic 59 0.11 0.00 0.11 0.00
cross 127 0.87 0.25 0.93 0.32
elipse 162 0.42 0.04 0.43 0.04
hidden 210 0.11 0.02 0.11 0.02
cyclic 233 0.39 0.11 0.35 0.12
hyper 163 0.48 0.06 0.50 0.07
mixed 206 0.90 0.27 0.94 0.32
ratio 224 0.90 0.26 0.95 0.33

Clearly, in time-constrained training (only 20 generations), the enhanced
symbolic regression system is an improvement over the previously published
results. While the enhanced system performs poorly on the two test cases
mixed and ratio with conditional target expressions, the obvious over fitting,
determined by the extreme differences between training error and testing error
in the previously published results, has vanished. In addition, the testing TCE



Symbolic Regression of Conditional Target Expressions 15

scores indicate that we can perform some useful classification even in the
difficult conditional problems with noise added.

As an acid test of the value of the system enhancements, it would be helpful
to know how well the enhanced symbolic regression system performs on the
two test cases mixed and ratio with conditional target expressions when the
training is not time-constrained. For instance, do added training generations
improve the training NLSE and TCE scores? Does added training time also
improve the testing NLSE and TCE scores, or does the harmful over fitting
reappear once again?

The results of training on the two test cases mixed and ratio, with condi-
tional target expressions, on 10,000 rows and five columns with 00% random
noise and allocating additional training generations, are shown below.

Table 5. Result for 10K rows by 5 columns with 00% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE Gens
mixed 233 0.94 0.32 0.95 0.32 20
mixed 9866 0.87 0.24 0.88 0.25 200
mixed 15148 0.85 0.23 0.87 0.26 400
ratio 229 0.94 0.33 0.94 0.32 20
ratio 10324 0.87 0.23 0.87 0.25 200
ratio 14406 0.82 0.19 0.82 0.20 400

Clearly removing the time constraint on training, by adding additional
training generations, steadily improves the results. There is obvious incremen-
tal improvement in the training NLSE and TCE scores for both problems as
the number of training generations increases. Furthermore, the testing NLSE
and TCE scores for both problems also improve steadily as the number of
training generations increases. There is no evidence of a limit on training
improvement nor any evidence of over fitting at least up to 400 training gen-
erations.

Taken together, these results portray a symbolic regression system which
is ready to handle some industrial strength problems containing conditional
target expressions.

7.1 Summary

Genetic Programming, from a corporate perspective, is ready for industrial use
on some large scale, symbolic regression-classification problems. Adapting the
latest research results, has created a symbolic regression tool whose efficiency
is improving especially on the more difficult test cases.

Financial institutional interest in the field is growing while pure research
continues at an aggressive pace. Further applied research in this field is abso-
lutely warranted. We are using our nonlinear regression system in the financial



16 Michael F. Korns

domain. But as new techniques are added and current ones improved, we be-
lieve that the system has evolved to be a domain-independent tool that can
provide superior regression and classification results for industrial scale non-
linear regression problems.

Clearly we need to experiment with even more techniques which will im-
prove our performance on the conditional test cases. Primary areas for fu-
ture research should include: experimenting with statistical and other types
of analysis to help build conditional WFFs for difficult conditional problems
with large amounts of noise; and experimenting with techniques to remove
training time constraints while increasing training generations, for instance
parallelizing the system on a cloud environment.



Symbolic Regression of Conditional Target Expressions 17

References

1. Michael Caplan, Ying Becker (2005). Lessons Learned Using Genetic Program-
ming in a Stock Picking Context, in Genetic Programming Theory and Practice
II. Springer, New York.

2. Shu-Heng Chen (2002), editor. Genetic Algorithms and Genetic Programming
in Computational Finance. Kluwer Academic Publishers, Dordrecht Nether-
lands.

3. Russell Eberhart, Yuhui Shi, James Kennedy (2001). Swarm Intelligence. Mor-
gan Kaufman, New York.

4. Gregory S Hornby (2006). Age-Layered Population Structure For reducing the
Problem of Premature Convergence, in GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation. ACM Press, New
York.

5. Michael Korns (2006). Large-Scale, Time-Constrained, Symbolic Regression, in
Genetic Programming Theory and Practice IV. Springer, New York.

6. Michael Korns (2007). Large-Scale, Time-Constrained, Symbolic Regression-
classification, in Genetic Programming Theory and Practice V. Springer, New
York.

7. Michael Korns, Loryfel Nunez (2008). Profiling Symbolic Regression-
classification, in Genetic Programming Theory and Practice V1. Springer, New
York.

8. John R Koza (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge Massachusetts.

9. John R Koza (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, Cambridge Massachusetts.

10. John R Koza, Forrest H Bennett III, David Andre, Martin A Keane (1999).
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann Publishers, San Francisco California.

11. Riccardo Poli, William Langdon, Nicholas McPhee (2008). A Field Guide to
Genetic Programming. LuLu Enterprises.

12. Hammad Majeed and Conor Ryan (2006). Using context-aware crossover to
improve the performance of GP, in GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ACM Press, New York.

13. Michael O’Neill, Conor Ryan (2003). Grammatical Evolution: Evolutionary Au-
tomatic Programming in an Arbitrary Language. Kluwer Academic Publishers,
Dordrecht Netherlands.

14. Kenneth Price, Rainer Storn, Jouni Lampinen (2005). Differential Evolution:
A Practical Approach to Global Optimization. Springer, New York.

15. Michael Schmidt and Hod Lipson (2007). Learning Noise, in GECCO 2007:
Proceedings of the 9th annual conference on Genetic and evolutionary compu-
tation. ACM Press, New York.

16. Kim-Fung Man, Kit-Sang Tang, Sam Kwong (1999). Genetic Algorithms.
Springer, New York.

17. Kenneth Price, Rainer Storn, Jouni Lampinen (2005). Differential Evolution:
A Practical Approach to Global Optimization. Springer, New York.


